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Figure S1. Multiloop energy expression. For this example there are three base pairs defining the multiloop (B = 3) and six
unpaired bases in the multiloop (U = 6) so Gmulti = α1 + 3α2 + 6α3.
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function fastiloops(i, j, l, Qb, Qx, Qx2)

//Qx recursion for O(N3) internal loop contributions to Qb

if (l ≥ 15) //smallest subsequence not added to Qb as special case
L1 = 4 //explicitly add in terms for L1 = 4, L2 ≥ 4
d = i + L1 + 1
for L2 = 4, j−d−5

s = L1 + L2
e = j − L2 − 1

Gpartial = γ1(s) + γ2(|L1 − L2|) + γ3(e, d, e+1, d−1)

Qx
i,s+= exp{−Gpartial/RT}Qb

d,e

L2 = 4 //explicitly add in terms for L1 ≥ 5, L2 = 4
e = j−L2−1
for L1 = 5, e−i−5

s = L1 + L2
d = i + L1 + 1

Gpartial = γ1(s) + γ2(|L1 − L2|) + γ3(e, d, e+1, d−1)

Qx
i,s+= exp{−Gpartial/RT}Qb

d,e

//Next convert Qx into interior loop energies
for s = 8, l−7

if (sequence permits i·j base pair)

Qb
i,j+= Qx

i,s exp{−γ3(i, j, i+1, j−1)/RT}
//Extend loops from s to s+2 for future calculation

//of Qb
i−1,j+1 with subsequence length l+2

if (i 6= 1 & j 6= N)
for s = 8, l−7

Qx2
i−1,s+2 = Qx

i,s exp{−[γ1(s+2) − γ1(s)]/RT}
//Add small inextensible interior loop terms to Qb as special cases
for L1 = 0, 3

d = i + L1 + 1
for L2 = 0, min(3, j−d−5)

e = j − L2 − 1

Qb
i,j+= exp{−Ginternal

i,d,e,j /RT}Qb
d,e

//Add bulge loops and large asymmetric loops as special cases
for L1 = 0, 3 //Cases L1 = 0, 1, 2, 3, L2 ≥ 4

d = i + L1 + 1
forL2 = 4, j−d−5

e = j − L2 − 1

Qb
i,j+= exp(−Ginternal

i,d,e,j /RT ) Qb
d,e

for L2 = 0, 3//Cases L1 ≥ 4, L2 = 0, 1, 2, 3
e = j−L2−1
for L1 = 4, e−i−5

d = i + L1 + 1

Qb
i,j+= exp{−Ginternal

i,d,e,j /RT}Qb
d,e

Figure S2. Pseudocode for computing interior loop con-

tributions to Qb in O(N3) as an alternative to the O(N4)

interior loop recursion of Figure 8. Here, N is the length

of the strand and l = j−i+1 is the length of the substrand

under consideration at any given point during the recursive

process. A schematic representation of “fastiloops” is pro-

vided in Supplementary Material Figure S3. The smallest

“possible extensible loop” is the case L1 = L2 = 4 with size

s = 8. Therefore, the smallest subsequence for which Qx

can be employed is l=15 (adding the four bases for i, d, e, j

and a minimum hairpin of three bases between d ·e). For

a given i and j, Qx
i,s already contains the contributions to

Qb
i,j for all extensible loops of size s except for the two cases

when either L1 =4 or L2 =4 (which cannot be obtained by

extending smaller loops that use a different energy expres-

sion). Enriching Qx
i,s with these two new possible extensible

loops, we then convert Qx
i,s into contributions to Qb

i,j by in-

troducing the term for closing these loops with pair i·j. Qx
i,s

is then extended to provide future values of Qx
i−1,s+2. All

other interior loop contributions (cases with either L1 ≤ 3

or L2 ≤ 3) are then added directly to Qb
i,j using the spe-

cial energy expressions of the standard model implied by

Ginternal
i,d,e,j . Note that the subsequence length l is fixed inside

each call to the function “fastiloops”. Hence, specifying i

implies j = i+ l−1. For subsequences of length l, we use

Qx
i,s (j implied) to compute Qx

i−1,s+2 (j+1 implied) which

will later be used to compute contributions to Qb
i−1,j+1 for

subsequences of length l+2. Thus, for a given value of l, the

values of Qx
i,s need only be stored for all legal values of i and

s until l has been incremented 3 times, at which point it can

be discarded. This is accomplished by using Qx1
i,s and Qx2

i,s

to store future contributions for subsequences of length l+1

and l+2.
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Figure S3. Schematic for interpreting the pseudocode of Supplementary Material Figure S2, which computes the interior

loop contributions to the partition function in O(N3). For a given i (with j implied by the current subsequence length l), the

grid illustrates the method of computing contributions to Qb
i,j for all interior loops with sides of length L1 and L2. For the

depicted case, the maximum interior loop size is s=L1+L2 =12. Adding seven bases to account for the closing bases i, d, e, j

and the smallest allowed hairpin of three bases between d·e, the subsequence under consideration is therefore of length l = 19.

The O(N) pale gray cases with either L1 ≤ 3 or L2 ≤ 3 use special energy functions and are added explicitly to Qb
i,j . The

medium gray and dark gray cases are the possible extensible loop contributions that are computed using Qx
i,s. Each diagonal

line spans the terms that will be stored in Qx
i,s for a particular value of s. The medium gray terms are the new possible

extensible loops with either L1 = 4 or L2 = 4. The dark gray terms were previously incorporated into to Qx
i,s by extending

smaller possible extensible loops.
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Figure S4. Illustration of the pseudoknot energy expression. a) An external pseudoknot. Bases external to the pseudoknot

have no associated energy. The penalty for forming an external pseudoknot is β1 . Base pairs that border the pseudoknot

interior receive penalty β2 while unpaired bases on the pseudoknot interior receive penalty β3. The energies associated with

the stacked base pairs are described using the standard model. b) A pseudoknot inside a multiloop. The penalty for forming

a pseudoknot inside a multiloop is βm
1 . The treatment of β2 and β3 inside the pseudoknot remains the same. In addition, the

standard penalty for formation of a multiloop is α1, the two pseudoknot base pairs that border the multiloop are given the

standard multiloop penalty α2, and unpaired bases that are inside the multiloop are given penalty α3. c) A pseudoknot within

a pseudoknot. The energy treatment for the exterior pseudoknot remains the same. The penalty for forming a pseudoknot

inside a pseudoknot is βp
1 . Base pairs from the interior pseudoknot that border the exterior pseudoknot receive penalty

β2. Otherwise, the energetic treatment of the interior pseudoknot is the same as for an exterior pseudoknot. The partition

function recursions allow an arbitrary number of levels of pseudoknots within pseudoknots. d) Pseudoknot with a hairpin and

an interior loop inside a spanning region of the pseudoknot. The multiloop that forms at the base of the hairpin is treated

using the standard multiloop potential. In general, the spanning region of a pseudoknot may contain interior loops, hairpins,

multiloops or additional pseudoknots.
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Initialize (Q, Qb, Qm, Qp, Qz) //O(N2) space
Initialize (Qg) //O(N4) space
Set all values to 0 except Qi,i−1 = Qz

i,i−1 = 1
for l = 1, N

for i = 1, N−l+1
j = i+l−1

//Qb recursion

Qb
i,j = exp(−Ghairpin

i,j
/RT )

for d = i+1, j−5 //all possible rightmost pairs d·e
for e = d+4, j−1

Qb
i,j += exp(−Ginterior

i,d,e,j /RT ) Qb
d,e

Qb
i,j += Qm

i+1,d−1 Qb
d,e exp{−[α1 + 2α2 + α3 (j−e−1)]/RT}

for d = i+1, j−9 //all possible rightmost pseudoknots filling [d, e]
for e = d+8, j−1

Grecursion = α1 + βm
1 + 3α2 + α3 (j−e−1)

Qb
i,j += exp{−[Grecursion + α3 (d−i−1)]/RT}Qp

d,e

Qb
i,j += Qm

i+1,d−1 Qp
d,e

exp{−Grecursion/RT}
//Qg recursion
for d = i + 1, j−5 //set inner pair d·e

for e = d+4, j − 1

Qg
i,d,e,j

+= exp(−Ginterior
i,d,e,j /RT )

for d = i + 2, j−6 //set inner pair d·e
for e = d+4, j − 2

for c = i + 1, d−1 //recursion on middle pair c·f
for f = e+1, j − 1

Qg
i,d,e,j

+= exp(−Ginterior
i,c,f,j /RT ) Qg

c,d,e,f

for d = i + 6, j−5 //set inner pair d·e
for e = d+4, j − 1

Qg
i,d,e,j

+= Qm
i+1,d−1 exp{−[α1+2α2+α3(j−e−1)]/RT}

for d = i + 1, j−10 //set inner pair d·e
for e = d+4, j − 6

Qg
i,d,e,j

+= exp{−[α1+2α2+α3(d−i−1)]/RT}Qm
e+1,j−1

for d = i + 6, j−10 //set inner pair d·e
for e = d+4, j − 6

Qg
i,d,e,j

+= Qm
i+1,d−1 exp{−[α1+2α2]/RT}Qm

e+1,j−1
for d = i + 7, j−6 //set inner pair d·e

for e = d+4, j − 2
for c = i + 6, d−1 //recursion on middle pair c·f

for f = e+1, j − 1

Grecursion = α1+2α2+α3(j−f−1)

Qg
i,d,e,j

+= Qm
i+1,c−1 Qg

c,d,e,f
exp{−Grecursion/RT}

for d = i + 2, j−11 //set inner pair d·e
for e = d+4, j − 7

for c = i + 1, d−1 //recursion on middle pair c·f
for f = e+1, j − 6

Grecursion = α1+2α2+α3(c−i−1)

Qg
i,d,e,j

+= exp{−Grecursion/RT}Qg
c,d,e,f

Qm
f+1,j−1

for d = i + 7, j−11 //set inner pair d·e
for e = d+4, j − 7

for c = i + 6, d−1 //recursion on middle pair c·f
for f = e+1, j − 6

Qg
i,d,e,j

+= Qm
i+1,c−1 exp{−[α1+2α2]/RT}Qg

c,d,e,f
Qm

f+1,j−1
//Qp recursion
for a = i + 1, j−7 //place points from left to right

for b = a+1, j−6
for c = b + 1, j−5

for d = max(c+1, a+4), j − 3
for e = d+1, j − 2

for f = max(e+1, c+4), j − 1
Qp

i,j
+= Qz

a+1,b−1 Qz
c+1,d−1 Qz

e+1,f−1
· Qg

i,a,d,e
Qg

b,c,f,j
exp{−2β2/RT}

//Q, Qm, Qz recursions
Qi,j = 1 //empty recursion
Qz

i,j = exp(−[β3(j−i+1)]/RT )
for d = i, j−4 //all possible rightmost pairs d·e

for e = d+4, j

Qi,j+= Qi,d−1 Qb
d,e

Qm
i,j += exp{−[α2 + α3 (d−i) + α3 (j−e)]/RT}Qb

d,e

Qm
i,j += Qm

i,d−1 Qb
d,e exp{−[α2 + α3 (j−e)]/RT}

Qz
i,j += Qz

i,d−1 Qb
d,e exp{−[β2 + β3(j−e)]/RT}

for d = i, j−8 //all possible rightmost pseudoknots filling [d, e]
for e = d+8, j

Qi,j+= Qi,d−1 Qp
d,e

exp{−β1/RT}
Qm

i,j += exp{−[βm
1 + 2α2 + α3 (d−i) + α3 (j−e)]/RT}Qp

d,e

Qm
i,j += Qm

i,d−1 Qp
d,e

exp{−[βm
1 + 2α2 + α3 (j−e)]/RT}

Qz
i,j += Qz

i,d−1 Qp
d,e

exp{−[βp
1 + 2β2 + β3(j−e)]/RT}

//Partition function is Q1,N

Figure S5. Pseudocode implementation of an O(N8) dy-

namic programming partition function algorithm for nucleic

acids with pseudoknots. Here, N is the length of the strand

and l = j−i+1 is the length of the substrand under consid-

eration at any given point during the recursive process. The

recursions are described schematically in Figures 12-16. In

this pseudocode, care has been taken to define programming

loop bounds so as to consider only valid secondary struc-

tures. The standard model requires three or more unpaired

bases in a hairpin, so a b-curve must satisfy j−i ≥ 4. Look-

ing at Figure 15, imposing this requirement on all base pairs

implies that a p-curve must satisfy j−i ≥ 8. In the interior of

a pseudoknot, the steric constraints on hairpins sometimes

lead to two conflicting requirements that are incorporated

using a “max” function to define the bounds for d and f .

The disallowed structures have infinite energies according to

the physical model so it is computationally efficient to ex-

clude them from consideration.
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a)

b)

Figure S6. Examples of pseudoknots that are excluded from the partition function recursions. Neither structure can be

decomposed into two spanning regions as required by Figure 15. The structure prediction recursions of Rivas and Eddy25

include both structures while the the structure prediction recursions of Akutsu24 include the latter.
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function fastiloops(i, j, l, Qg, Qx, Qx2)
//Qx recursion for O(N5) internal loop contributions to Qg

if (l ≥ 17) //smallest subsequence not added to Qg as special case
for d = i+6, j−10

for e = d+4, j−6
L1 = 4 //explicitly add in terms for L1 = 4, L2 ≥ 4
c = i + L1 + 1
for L2 = 4, j−e−2

s = L1 + L2
f = j − L2 − 1

Gpartial = γ1(s) + γ2(|L1 − L2|) + γ3(f, c, f+1, c−1)

Qx
i,d,e,s+= exp{−Gpartial/RT}Qg

c,d,e,f

if ( d ≥ i + 7)
L2 = 4 //explicitly add in terms for L1 ≥ 5, L2 = 4
f = j − L2 − 1
for L1 = 5, d−i−2

s = L1 + L2
c = i + L1 + 1

Gpartial = γ1(s) + γ2(|L1 − L2|) + γ3(f, c, f+1, c−1)

Qx
i,d,e,L1+L2

+= exp{−Gpartial/RT}Qg
c,d,e,f

for d = i+1, j−5
for e = d+4, j−1

//Convert Qx into interior loop energies
if (l ≥ 17 & sequence permits i·j base pair)

for size = 8, l−9
Qg

i,d,e,j
+= Qx

i,d,e,s exp{−γ3(i, j, i + 1, j − 1)/RT}
//Extend loops for future use
if (i 6= 1 & j 6= N)

for s = 8, l−9
Qx2

i−1,d,e,s+2 = Qx
i,d,e,s exp{−[γ1(s+2) − γ1(s)]/RT}

//Add small inextensible interior loops to Qg as special cases
for L1 = 0, min(3, d−i−2)

c = i + L1 + 1
for L2 = 0, min(3, j−e−2)

f = j − L2 − 1

Qg
i,d,e,j

+= exp{−Ginterior
i,c,f,j /RT}Qg

c,d,e,f

//Add bulge loops and large asymmetric loops as special cases
for L1 = 0, min(3, d−i −2) //Cases L1 = 0, 1, 2, 3, L2 ≥ 4

c = i + L1 + 1
for L2 = 4, j−e−2

f = j − L2 − 1

Qg
i,d,e,j

+= exp{−Ginterior
i,c,f,j /RT}Qg

c,d,e,f

for L2 = 0, min(3, j−e−2) //Cases L1 ≥ 4, L2 = 0, 1, 2, 3
f = j − L2 − 1
for L1 = 4, d−i−2

c = i + L1 + 1

Qg
i,d,e,j

+= exp{−Ginterior
i,c,f,j /RT}Qg

c,d,e,f

Figure S7. Pseudocode for computing interior loop con-

tributions to Qg in O(N5) as an alternative to the O(N6)

interior loop recursion of Figure 19. Here, N is the length

of the strand and l = j−i+1 is the length of the substrand

under consideration at any given point during the recursive

process. The smallest “possible extensible loop” is the case

L1 = L2 = 4 with size s = 8. Therefore, the smallest subse-

quence for which Qx can be employed is l = 17 (adding the

four closing bases i, c, f, j, the additional spanning pair d·e,
and a minimum hairpin loop of three bases). For given val-

ues of i, d and e, Qx
i,d,e,s already contains the contributions

to Qg
i,d,e,j for all extensible loops of size s except for the two

cases when either L1 = 4 or L2 = 4 (which cannot be ob-

tained by extending smaller loops that use a different energy

expression). Enriching Qx
i,d,e,s with these two new possible

extensible loops, we then convert Qx
i,d,e,s into contributions

to Qg
i,d,e,j by introducing the term for closing these loops

with pair i · j. Qx
i,d,e,s is then extended to provide future

values of Qx
i−1,d,e,s+2. All other interior loop contributions

(cases with either L1 ≤ 3 or L2 ≤ 3) are then added directly

to Qb
i,j using the special energy expressions of the standard

model implied by Ginternal
i,d,e,j . Note that the subsequence length

l is fixed inside each call to the function “fastiloops”. Hence,

specifying i implies j = i+l−1. For subsequences of length

l, we use Qx
i,d,e,s (j implied) to compute Qx

i−1,d,e,s+2 (j+1

implied) which will later be used to compute contributions

to Qg
i−1,d,e,j+1 for subsequences of length l+2. Thus, for a

given value of l, the values of Qx
i,d,e,s need only be stored

for all legal values of i, d, e, and s until l has been incre-

mented 3 times, at which point it can be discarded. This

is accomplished by using Qx1
i,d,e,s and Qx2

i,d,e,s to store future

contributions for subsequences of length l+1 and l+2.
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